
ht. J. Heat Muss Transje~. Vol. 25. No. 4. pp. X-534, 1982 ~~7--93lO~B2/~0~23- 12 $03.00/O 
Printed in Great Britain Q 1982 Pqamon Press Ltd. 

RADIATIVE HEAT TRANSFER IN A COMPLETELY 
GENERAL PLACE-PARALLEL ~~VIR~~~E~T 

AJAY SHARMA and ALLEN C. COGLEV 
Department of Energy Engineering, University ofIllinois at Chicago Circle, P.0. Box 4348, Chicago, Illinois, 

U.S.A. 

(Receiz& 16 January 1981 und in redsed form 23 September 1981) 

Abstract-A new approach to radiative heat transfer with scattering is presented and used to obtain the first 
general solution for radiative equilibrium in a non-grey, plane-parallel medium. Use of the method when 
including conduction and convection is also discussed. Diffuse radiative fields are calculated in terms of 
delined scattering functions (Green’s functions) that represent the response of the medium and any scattering 
(reflecting) surfaces to unitary-type illumination. These scattering functions are found using the com- 
putationally fast adding/doubling method. The energy conservation equation containing these scattering 

functions is then solved numerically for any particular heat transfer problem. 

NOMENCLATURE 

scattering functions defined in equa- 

tions (22); 
elements of the integral equation ker- 
nels defined in equations (39); 
matrix of Aij; 
the Planck function vector defined in 
equation (39); 
radiative source distribution ; 
the Planck function ; 
scattering functions defined in equa- 
tions (22); 
the ex~nential integral function, 
degree 1; 
the scattering kernel defined in equation 

(22); 
a vector of F,, defined in equations (39); 
the function involving grey surface 
emissions defined in equation (32); 
the function for non-grey surfaces given 
by equation (35); 
asymmetry factor for the 
Henyey-Greenstein phase function, 
equation (33); 
the kernel for the grey radiative equifib- 
rium problem given in equation (31); 
non-grey radiative equilibrium kernel 
defined in equation (37); 
scalar specific intensity; 
intensities originating at the top and 
bottom boundaries; 
the scattering source function ; 
volumetric absorption coefficient; 
band averaged absorption coefficient, 
equation (42); 
the diagonal matrix of values of K, at 
discrete space quadrature points; 
the Planck mean absorption coefficient, 
equation (43); 
volumetric scattering caefficient; 

volumetric extinction coefficient; 
the scattering phase function; 
the monochromatic, and total (summed 
for all wavelengths) radiative flux, 
respectively ; 
running optical depth variable, also the 
optical depth of the illumination; 
temperature ratio Ti/T:; 
directions of radiative propagation, see 
Fig. 1; 
optical depth variables; 
total optical thickness of the medium; 
the vector of tem~ratures at discrete 
space quadracure locations; 
the transmission functions defined in 
equation (it ) and Table 1, also T is used 
for the tem~rature where it is contex- 
tually clear ; 
the bottom and top surface tempera- 
tures, respectively ; 
the “residuaf energy” vector given by 
equations (40) and (41); 
standard space quadrature weights; 
special ~gcnera~zed) space quadrature 
weights; 
space coordinates, see Fig. t ; 
physical thickness of the medium. 

Greek symbofs 
4 the Dirac delta function ; 
63. Gr, emissivities of the bottom and top sur- 

faces, respectively; 
& zenith angle, see Fig. 1; 
2, the wavelength of radiation ; 
i4 cosine of the zenith angle ; 
4, azimuth angle in Fig. 1, and the non- 

dimensional temperature defined in 
equation (30); 

(JJ, single scattering albedo. 
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Subscripts 

s, F, 

n, 

Superscripts 

f, -> 

0, 
n, 
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standard and fundamental functions, 

respectively ; 
nth Fourier component of a function. 

the direction of propagation of inten- 
sities and the direction of the probe 

(illumination) in the scattering and 
other functions; 
zeroth Fourier component; 
nth Fourier component. 

INTRODUCTIOK 

MANY RADIATIVE heat transfer problems in scattering, 
absorbing and emitting media have been solved under 

various simplifying assumptions. A good pedagogical 
summary of such solutions and their formulation is 
given by Sparrow and Cess [l]. Most of these solved 
problems are for grey, isotropically scattering, plane- 

parallel media with grey, diffuse surfaces [l-4]. 
However. approximate solutions are available for 

certain special cases such as media with specularly 

reflecting surfaces [5] and non-grey, but non- 
scattering, media with narrow spectral lines [6]. The 
usual approach adopted in obtaining these results 
involves simultaneous solution of the energy equation, 
radiative transfer equation, and radiative intensity 
balances at the reflecting surfaces, Without simplifying 
assumptions, the resulting coupled system of non- 
linear, integral-differential equations is extremely dif- 
ficult to solve. 

The solution procedure introduced here is con- 
ceptually quite different. Linearity of radiative transfer, 
with respect to radiative sources, is used to separate 

out all scattering phenomena by defining certain 
scattering functions that depend only upon medium 
and surface properties, This reduces the interdepen- 
dence’of the governing equations and allows one to 

handle all scattering events by means of an efficient 
matrix-algebra formulation. The scattering functions 

are generalizations of Chandrasekhar’s [7] scattering 
and transmission functions and play the same role as 
Green’s functions. A particular heat transfer problem 
is stated as a convolution (superposition) of the 
required radiative source distribution with the appro- 
priate scattering functions. The resulting energy equa- 
tion is then solved to obtain the needed temperature 

field and heat fluxes. The structure of this formulation 
leads naturally to general and automated numerical 
solutions. Although here restricted to plane-parallel 
media, the same concept should be extendible to multi- 
dimensional problems. 

As a particular application this paper presents the 
first general solution for non-grey radiative equilib- 

rium with scattering. The solution applies to aniso- 
tropically scattering, inhomogeneous media with ar- 
bitrary reflecting and absorbing surfaces. The solution 

procedure is general enough in that it also can be used 
for problems with conduction and convection. 

DIFFUSE RADIATIVE FIELDS 

The background for the scattering radiative transfer 
used in this paper is developed in [8- 123. The impor- 

tant attributes of this approach are (1) it collects all 
scattering phenomena into a set of scattering functions 
that depend only upon medium and surface properties, 
and (2) these functions are calculated by a fast 
adding/doubling algorithm which is purely algebraic. 
The radiative heat flux can then be expressed by 
convoluting the radiative sources with the scattering 
functions. This process replaces the usual procedure of 
solving a coupled set of integral equations representing 

radiative transfer. With the present formulation, only 
the single energy equation must be solved for any given 
heat transfer problem. A brief description of the 
method follows, while the details are available in [8]. 

Consider phase incoherent, monochromatic radi- 
ation represented by the scalar specific intensity* I in 
a plane-parallel, finite medium. The origin of the 
Cartesian coordinate is at the top boundary with x 
measured positively into the medium as shown in Fig. 
1. Direction of radiative propagation at a point is given 
by $0, 4), the set of zenith 0 and azimuthal 4 angles 
referenced to the x and J directions, respectively. The 
volumetric absorption K, and scattering K, coef- 

ficients and their sum (extinction coefficient) K, = 

K, + K, can vary only with xt. The dimensionless 
optical depth is defined on the extinction coefficient as 

X 
t= 

I 
KJx’) dx’, (1) 

0 

and t, and x0 are the total optical depth and thickness, 
respectively. With this nomenclature, the equation of 
radiative transfer can be written as [l] 

il(t, s) 
P ~ = I(t, s) - B(t, s) - J(t, s) 

St 
(2) 

where p = cos0 is the zenith direction cosine. The 
internal radiative source distribution B is defined such 
that 

B(r. s) d’ I I 
IP I 

yields the specific intensity in direction s illuminating 
the medium at t due to sources in dr. For thermal 
sources at local thermodynamic equilibrium one 

obtains 

B(t) = (1 - o)(t)] B[T(t)], (3) 

where Bis the Planck function at temperature T and w 

* The notation here does not explicitly note the frequency 
dependence of I and other variables and parameters. It is 
understood that the monochromatic problem is being de- 
veloped at this point. 

t Radiative properties are usually known functions of the 
temperature. For heat transfer problems with suhicient 
temperature variations, the medium properties become func- 
tions of the unknown temperature field. We deal only with 
temperature independent radiative properties here and point 
out in the next section how this constraint can be relaxed. 
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= &/I<, is the albedo for single scattering. The 
scattering source function J is then defined by 

d#’ P(r; s, s’) r(t, s/j, (4) 

where P is the scattering phase function normalized 
such that 

1 

I s 

2n 

+’ dQt’P(t; s, s’) = 4~ (5) 
-1 0 

For convenience the radiative field is split into the 
positive (up) and negative (down) hemispherical direc- 
tions and consequently all &L’S are read as positive. 
Equation (2) is solved by an integrating factor to 
obtain the following expressions for the upward It 
and downward I- propagating intensities: 

t--t 0 
I+(t, s) = I,:l(s)exp - ( ) P 

1 (0 

+i 
dt’ [B(r’, s) + J(t’, s)] exp (6) 

and 

I- (t, s) = I;(s)exp 
( 1 

- b 

1 ’ 
+- 

s 
dt’ [B(t’, s) + J(t’, s)] exp . (7) 

P 0 

Here 1; and I:, are intensities emitted at the top and 
bottom surfaces, respectively. 

The traditional approach is to now combine equa- 
tions (4) (6) and (7) to derive an integral equation for J, 
and this equation is solved simultaneously with the 
energy equation (see, e.g., Ch. 7 of [l]). In the present 
work a different approach is taken. The integral 
equation for J, along with distribution theory, is used 
to obtain the following statement of linearity [ 121: 

+ I,(d) J,(f. s; t,, s’) 

+’ 
$0 

i’ I 
dt’ 

fc’ 0 
I?+@‘, s’) J; (r, s; fo, s’, f’) 

+ B-(f’, s’) J,(t. s; t,, s’, t’) Ii . 69 
This equation expresses the fact that the scattering 
source function can be expressed as convolutions of the 
driving illumination with the functions J, and J,. 
These functions are Green’s functions that character- 
ize the response of the scattering environment to 
unitary-type probes. The fundamental or Green’s 
problem is specified by the following illumination : 

I;, = r, = 0, 

B(r, s) = 4X~i &s-s’, l-f’) (9) 

where 6 is the Dirac delta function. The solution to this 
problem is J, and, when the probe is at a boundary, J,. 

(0 ) Space 
x=x, 

(b) ~trectmn 

FIG. 1. The coordinate nomenclature. 

An important concept of nomenclature should be 
made clear. The superscript sign on a resulting or 
driving intensity is the direction of propagation. The 
resulting or required scattering source function J is 
also an intensity and fits the same scheme. However, 
the J,‘s and J,‘s are intermediate Green’s function that 
depend upon two directions, one for radiative pro- 
pagation (response) and the other for the illumination 
(probe). The superscript signs on these functions, and 
the related scattering functions that follow, denote the 
direction of illuminarion. 

The source function is a local point function of 
which only certain spatial integrals are required to 
obtain the radiative intensities. This is observed by 
substituting equation (8) into equation (6) to obtain 

I - to 
r+(t, S) = IG,(s)exp - 

! 1 P 

x 
i 
Il;,(s’) J:V, s; to, 3’) + I,(s’) J,(t’, s; t,, s’) 

+’ 
s 

10 

Pf 0 
dr [B+(r, s’) J,+(f’, s; to, s’, Y) 

+ B-k, s’) J;(f’, s; fo, s’, r)] 
I 

. (10) 

This expression contains the following scattering 
functions 

i;it.s;r,,r.,I)=~ndf’exp~~)J;(I’,s:r,.ri,r), 

(11) 
and their spatial limits [l&12] given in Table 1. These 
functions are global in that they represent scattering 
processes in a finite layer of optical thickness to, 
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Table 1. Role of scattering functions 

Level Function group Observer 
Role 

Probe 

SC,T,i (r.s;t,,s,r) 

s,* , -T” (t, s ; t,, s’) 

S: , Tz (s ; t,, s’, r) 

interior (t, s) 

interior (t, s) 

boundary 

interior (s’, r) 

interior (s’, r) 

S$ , T’ (s ; to, s’) 

together with any effects of boundary reflections as 

explained in [lo]. In equations (1 l), T stands for 
transmission functions where radiation is diffusely 
transmitted in the direction of probe, while S is a 
scattering function which represents the same scatter- 
ing phenomena for the direction opposite to the probe. 
All such functions are generally called “scattering” 
functions. Using these functions, the intensity fields of 
equations (6) and (7) can be written as 

+ I,s; (t) + !_ 
j 

10 

d 0 
dr (B+(r) T,(t, r) 

+ B-(r) s; (t, r)) 

+ I, F’, (t) + f_ 
j 

1,) 

p’ 0 
d@‘(r) s:(t, r) 

+ B-(r) T;(t, r)) 

(12) 

(13) 

In these equations, and in many instances to follow, the 
directional (angular) dependence of various functions 
has been omitted for brevity. 

A Fourier series expansion for the 4 dependence of 
all intensities and scattering functions is next in- 
troduced to simplify calculations. It will also be shown 
that heat transfer problems involve only the zeroth 
Fourier components. The scattering phase function P 

is expanded as 

P(t; s, s’) = 2 P,(t; /A p’)cosn (4 - 4’). (14) 
"=O 

Intensities and sources are similarly represented by 

1(t, s) = 2 rn(t, p)cosn& 
“=O 

N 
(15) 

Fourier components of the scattering functions are 
also defined, e.g. : 

7y(s, to, s’) = ; T:+ (p; to, p’) cos n (4 - 4’). 
n=O 

(16) 

Algebraic substitution of these expressions into the 
preceding development shows that each Fourier com- 
ponent of the intensity field depends only upon 
corresponding components of the scattering functions. 

Heat transfer problems require the radiant heat flux 
and its divergence, which in one dimension is the partial 
derivative of heat flux with respect to the optical depth. 
Heat flux divergence is used in the energy conservation 
equation which is solved to obtain the temperature 
distribution. In most engineering problems, once the 
temperature profile is known, the heat flux is required 
only at medium boundaries. The flux at the boundaries 
can be written in terms of lower level scattering 
functions than the internal flux in the medium. To 
determine which scattering functions are needed for 
heat transfer calculations, heat flux expressions are 
developed. 

The monochromatic radiative flux qR is given by the 
angular integration of intensity as 

qFc(t) = s ds $(t, s) 
4n 

(17) 

Therefore, one obtains 

j 

1 
qd0 = 27c w$ [I”-(c pL) - I’+(t, p,]. (18) 

0 

Suitable expressions of intensities [e.g. the zeroth 
Fourier components from equations (12) and (13)] 
can be substituted in (17) to calculate the heat flux. 
This has been done in Ch. IV of [S]. In order to 
formulate the heat transfer problem, equation (17) is 
differentiated to obtain the expression for the diver- 
gence of qR as 

(19) B(t, s) = 1 B,(t, I*) cos n+ 
n=O 
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The governing equation (2) of radiative transfer is then 
used to obtain 

%R(O 
- 

s 2t 4n 
ds[I(t, s) - B(t, s) - J(t, s)]. (20) 

The scattering source function J can be eliminated 
from (20) in terms of the intensity field I. First, the 
following expression of energy conservation is derived 
by integrating the defining equation (4) for J and using 
the normalization (5) of the scattering phase function : 

s ds J(t, s) = $) 
4a 

ds’ P(t ; s, s’) I(t, s’) 

w(t) 

- s [S 4x 477 

ds’ ds P(t; s, s’) I(t, s’) 
4n 1 

= w(t) 
i 

ds’ I( r, s’). 
4n 

This relation used in equation (20) then gives 

am) 
p=j ds{[l -w(t)]I(r,s)-B(r,s)}. (21) at 4n 

It is seen therefore, that both the heat flux qR and its 
divergence are expressible in terms of angle integrals of 
I. This leads to the definition of the following angle- 
integrated scattering functions: 

c+(r, p; to) = F 

c-Q, P; to) = F 
s 

’ d/i 
y 

0 p 

x Vf+ 0, V; ro, p’) + q+ (t, p; to, p’)], 

a+(r, p; to, r) = 2n 
s 

’ d,u’ 
Y 

0 P 

x [P’ (t, P; to, P’, r) + SoF- (t. p; to, p’, r)], 

a-(r, p; to, r) = 271 
s 

1 d$ 
I 

0 P 

x CG- 0. P; to, P’, rf + So,+ 0, p; to, p’, r)] 

and 

f*(t; to, r) = & s 1 dp - 
0 P 

x [n-U, P; I,, r) f u+(r, P; to, r)]. (22) 

These definitions are used, together with the in- 
tensity field expressions (12) and (13) in equation (21) 
to obtain the expression for the monochromatic 
radiative heat flux divergence for thermally illumi- 
nated media [8] as 

aqR(t) 
~ = 2a[1 - W(t)] 

iit i 
-2B(r) 

s 

10 
+ dt’[l --w(t)] B(r’)[E,(lr - t’j) +f’(r. t’)] 

0 

+ {old~I~~ [exp(y)+ y] 

+jO1dpIgW[exp(:)+c$$]}. (23) 

Boundary intensities I:- and I:,’ appearing in (23) 
are considered to be functions of p, allowing for 
anisotropic boundary conditions. No assumption has 
been made about scattering within the medium, which 
can also be anisotropic. The function E, appearing 
above is the standard exponential integral function. 

It is clear from equation (23) that in the present 
formulation, the temperature field (contained in B) has 
been separated from the scattering phenomena. A0 
scattering processes are represented by the scattering 
functions which are calculated in terms of the media 
scattering properties only, and are therefore inde- 
pendent of the illumination. 

CALCULATING THE SCAITERING FUNCTIONS 

The scattering functions S, T, c, a andfdefined in the 
previous section depend upon the single scattering 
albedo w and the phase function P. They are 
independent of the radiative source function B if UJ and 
P are. In the case of thermally driven media, the 
scattering functions can be independently calculated if 
w and P are not temperature dependent. However, if 
the radiative properties vary with temperature, the 
procedure for obtaining the scattering functions de- 
scribed below has to be applied iteratively with the 
solution of the energy equation [8]. 

Domanus and Cogley [12] developed an invariant 
imbedding method for computing the scattering func- 
tions. Their work used parametric differentiation with 
respect to optical thickness to replace the governing 
linear integral equation for the scattering function by a 
set of ordinary differential equations appropriate for 
numerical integration. Invariant imbedding equations 
result in exact calculation of the scattering functions 
for inhomogeneous media [13]. This method, how- 
ever, requires the solution of a very large system of 
simultaneous, non-linear, ordinary differential equa- 
tions, making the computations rather slow [8]. 
Therefore, the adding method was adopted [8-lo] as 
an alternative, fast scheme of obtaining the scattering 
functions. 

The adding/doubling method has been developed by 
several investigators [14, 151 using seemingly different 
approaches and nomenclature. It has been widely used 
because it is computationally fast and accurate for 
homogeneous scattering media. To apply the adding 
method to inhomogeneous media, small homogeneous 
layers with different scattering properties are super- 
imposed, resulting in some errors in the scattering 
functions. These errors have only recently been charac- 
terized, and criteria for controlling them have been 
developed [16]. This has been done by having an 
adding/doubling scheme which parallels the exact 
invariant imbedding method of [12]. Thus, it has been 
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shown [16] that the adding/doubling algorithm can 
calculate the scattering functions necessary for heat 
transfer problems, to within an accuracy of lx, in less 
than i the computer time required by the correspond- 
ing invariant imbedding calculations. 

The adding method used in the present work is 
derived from the superposition principle using the 

statement of linearity in scattering phenomena given in 
equation (8). It is beyond the scope of this paper to 
describe adding/doubling in detail. All the adding 
equations for the scattering functions and the details of 
the algorithm used are available in [8] and [lo]. The 
important points to note about this technique are : (1) 
it allows for calculations of all the scattering functions 

introduced in the previous section in terms of the 
media radiative properties w, P and the optical 
thickness; (2) these calculations are exact for homo- 
geneous media and accurate, with controlled error, for 

inhomogeneous media, and (3) all scattering pheno- 
mena, including surface scattering, are represented by 

the calculated scattering functions. Unlike many other 
techniques, the present approach decouples scattering 
(reflection) processes occurring on the boundary sur- 
faces from the surface radiocities. The adding/doubl- 

ing scheme incorporates the effects of completely 
general surfaces on the scattering functions in a 
straightforward and unified manner [8-lo]. 

A fast production level adding/doubling computer 

program for scattering function calculations is avail- 
able from the authors. Therefore, these calculations 
can be thought of as being performed by a “black box” 
with radiative properties as input and scattering 
functions as output. 

RADIATIVE EQUILIBRIUM 

When radiation is the only, or predominant, mode 

of energy transfer and the system is in steady state, the 
energy equation reduces to 

div qRT = 0. (24) 

This defines the condition of radiative equilibrium. For 

Radiation particlpoting medium 

#,- ‘0 
/ , / 1, , / / / / 1 

c 

x,,t,(X) 

- 

NOTE: Elther of the two surfaces may not be present 

Frc;. 2 A schematic for plane-parallel radiative equilibrium. 

the l-dim. geometry (Fig. 2) considered in this paper, 
radiative equilibrium is represented by 

dq,, ~ = 0. 
dx (25) 

Here qRT is the total radiative heat flux that is related to 
the monochromatic quantity discussed earlier by 

i 

Ix 

%T = q&) di, (26) 
0 

where i, is the wavelength of radiation. Therefore the 
condition for radiative equilibrium can be written as 

I- 

’ %a4 dh = o, 
ax 

(27) 
0 

Using the chain rule of differentiation and definition 
(1) for optical depth t, (27) can be rewritten as 

s 

1 
K,(i, x)2 (1, x)dE. = 0, (28) 

0 

where K, is the extinction coefficient defined earlier. 

The expression (23) for dq,/dt is then substituted into 
(28). Before dealing with this rather complex non-grey 
problem, the simple case of a grey medium is 
considered. 

A medium is grey when its radiative properties are 
not functions of the wavelength. If the surfaces are also 
assumed to be grey with directional emissivities r, and 
cg at temperatures T, and T,, respectively, the 
radiative equilibrium equation can be written as 

24(t) = F,,(t) + 
s 

f,, 
G(r, r’) #(t’) dr. (29) 

0 

The Planck function has been frequently integrated as 

I 

I 
B(1, T)di. = c, 

0 7-L 

where CJ is the Stefan-Boltzmann constant. In equation 
(29) the non-dimensional temperature function $J is 
defined by 

40) = 
T4(t) - T; 

T”, - T; ’ 
(30) 

and the kernel G can be written as 

G(t, t’) = [l - w(t’)] [E,(lt - PI) +f+(t, t’)]. 

(31) 

Finally, the inhomogeneous function F,, is found to be 

FGSO) = & {j: +(p)[exp[yj + Tl]dp 

s 

ICI 
+ G(t, t’) dt’ - 2 , 

0 

where R = T4,/T$ 

I dp 

(32) 
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Equation (29) is similar to the corresponding 
equation for isotropic scattering given as equation 
(8-4) of [l], and reduces to that equation when 
scattering is isotropic and surfaces are diffuse. 
Although the analytic reduction of equation (29) to 
equation (8-4) of [ l] is rather involved and tedious, the 
numerical solutions discussed later demonstrate this 
reduction. Anisotropic scattering introduces the c 
scattering functions in F,, and thef+ function in the 
kernel G. Also note that anisotropic scattering does 
not allow one to define r#~ in terms of surface radiosities 
as in [ 11. Con~quently the solution of Cp depends upon 
the temperature ratio R. Nonetheless, all grey radiative 
equilibrium problems in plane-parallel media are 
governed by an integral equation of the same form. 

The equation (29) for radiative equilibrium is a 
Fredholm integral equation of the second kind. 
Although several solution techniques exist for integral 
equations, a numerical scheme is used here for two 
reasons. First of all, no exact analytic solution of the 
above equations is possible, while accurate numerical 
results are obtained economically. Secondly, since the 
c and f ’ scattering functions can only be calculated 
numerically and at discrete optical depth locations, 
numerical solutions of integral equations containing 
them are imperative. The integral equation is 
converted to a discrete form since the unknown 
function 4 can only be calculated at a finite number of 
locations. This is done by replacing the integral 
appearing in (29) by a numerical quadrature. A special 
quadrature scheme is used to accurately handle the 
singular E, function present in the integrand. In this 
scheme the quadrature weights are functions of 
moments of the E, function, and the singular part of 
the integrand is thus analytically integrated. Once 
converted to a discrete form, the governing integral 
equation (29) reduces to a set of simultaneous, linear, 
algebraic equations which are then solved in a 
standard manner. The details of the special quadrature 
and the numerical method are available in [ 171, which 
also contains a discussion on the accuracy of this 
approach. Example results for grey radiative 
equilibrium with anisotropic scattering and reflecting 
boundaries are presented here. In these examples, the 
scattering phase function used is the one developed by 
Henyey and Greenstein [18]. This analytic phase 
function simulates aerosol scattering quite well while 
being simple and computationally efficient to use. The 
phase function is given by 

w, 9) = 
1 -g2 

(1 + 42 - 2g_ cos @)3’s * (33) 

Here 0 is the included angle between the incident and 
scattered rays, and the parameter g is the asymmetry 
factor. The value g = 0 represents an isotropic 
scatterer, 0 < g I 1 a forward scatterer, and - 1 5 g 
< 0 gives backward scattering. The extreme values of 
g, 1 and - 1, are used for total forward or backward 
scattering, respectively. 

I.0 

I- 

03 IO 

t/t* 

FIG. 3. Temperature as a function of optical depth t for grey 
radiative equilibrium with R = 0.01 and t, = 2.0. The curves 
~rr~~ndto:(l)~ = 0.4,s = O.O;(2)w = 0.4r,g = 0.0;(3) 
w=0.4,g=0.4;(4)w=0.4,g=0.8;(5)w=0.4,g=0.4t. 
Curves 1-5 are for black surfaces while curve 6 has medium 
properties as in curve 1 with reflecting surface properties given 

in Fig. 4. 

The results in Fig. 3 show the effects of anisotropic 
scattering and reflecting surfaces on radiative 
equilibrium temperature profiles in grey media of t, 
= 2.0 with grey surfacesand R = 0.01. Curves l-5 are 
for media with black surfaces while curve 6 is for a 
homogeneous, isotropic (w = 0.4, g = 0.0) medium 
bounded by identical reflecting surfaces at the top and 
bottom with the properties given in Fig. 4. In Fig. 3, 
curve 1 is for a homogeneous and isotropic medium of 
w = 0.4 and g = 0. This curve reproduces the results 
for isotropic scattering media given in [I] and, 
therefore, confirms the accuracy of present 
calculations. Curve 2 is calculated for a medium of 
isotropic scatterers which are inhomogeneously 
distributed (o = 0.4t). The theory of isotropic 

8 Incident 
Radiation 

054 012 60 0.‘12 O.&i 

SURFACE REFLECTIVITY 

I 1 t ’ I 1 I 1 I 
1.0 0.5 0.0 0.5 1.0 

SURFACE EMMISIVITY 

FIG. 4. The bidirectional reflectivity p for the incidence angle 
shown, and the corresponding emissivity F, for the opaque 

surfaces used in Fig. 3, curve 6. 
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scattering [l] contends that the conditions of radiative 
equilibrium are independent of w for such media. In 
Fig. 3, curves 1 and 2 are identical, thusconfirming that 
proper numerical cancellation of the terms involving w 
is taking place. In fact the numerical results used to 
plot curves 1 and 2 are the same to three significant 

digits. The temperature profiles for anisotropic scatter- 
ing media of 0=0.4 are shown in curves 3 (g =0.4), 
4(g = 0.8) and 5 (g = 0.4t). The scatterers used 
for curve 5 have different phase function at different 
locations as given by the g profile. These three curves 
(3,4 and 5) show that the anisotropy of the scattering 

phase function can significantly perturb the radiative 

equilibrium temperature profile. Forward scatterers 
(g > 0) are seen to increase the temperature difference 
(radiation slip) between the boundary surfaces and the 
medium next to them (compare the end points of 
curves 1, 3 and 4). Surface scattering (reflection) is seen 
to have the same effect (curve 6) and these changes are 

similar to those which occur if the medium optical 
thickness t, is reduced. All media with symmetry about 
the centerline have the same centerline temperature 

(&center = 0.5). Although this symmetry is not 

disturbed by variations in w for isotropic scatterers, the 
situation with inhomogeneously distributed aniso- 

tropic scatters (g = 0.4t) is not symmetric (curve 5), 

and 4Centcr # 0.5. 
For the special case of one black surface and one 

specularly reflecting surface with an isotropically 
scattering medium, a prior solution for grey radiative 
equilibrium exist and is discussed in [l]. In that case 
(his Figs. 8-7 and 8-8) the temperature profiles are 
normalized with radiosities and show a much smaller 
surface reflecting effect and in the opposite sense when 
compared to curve 6 of Fig. 3. The actual temperature 
profiles are presented here and show the fact that 
reflecting surfaces increase the radiation slip. This 
phenomena is correct since in the limit of completely 
reflecting surfaces (a limit that must be taken with care 
and is in a sense nonphysical) the solution is $J 

= constant = 0.5. 
The next step is to consider the realistic situation of 

radiative equilibrium in absorbing, emitting, and 

anisotropically scattering media with wavelength 
dependent properties. Equation (23) is used together 
with the expression (28) resulting in the following 

governing equation for non-grey radiative 

equilibrium : 

j. K,(i, x)(28[i, T(x)] + F,,(j., x) 

s xi, 

+ G,(i., x. x’)B[i.. T(x’)] dx’ (34) 
0 

Here x is the physical space coordinate as illustrated in 
Fig. 2, and K, is the volumetric absorption coefficient 
for the medium which appears here because 

K,(l - w) = (K, + K,) 
( 

1 - * 
1 

= K, 
a s 

The temperature T is the dependent variable and B is 
the Planck function at wavelength 1. The driving 
function F,, is given by 

The optical depth coordinate t appearing on the R.H.S. 
of (35) is mapped to the physical depth x by equation 
(1). For the special case of media bounded by surfaces 
at temperatures T, and T,, the first Fourier 
component of the boundary intensities are calculated 
from 

Here c are the directional spectral emissivities of the 
surfaces. The kernel G, in Equation (34) is written in 

terms of previously defined functions as 

G,(i., x, x’) = K,(i, x’)[E,(lt - r’l) +f+(t, t’)]. (37) 

The above expression also employs the mapping from 
x to t coordinates. To clarify this transformation, 

equation (1) is restated here in the following form: 

t(& x) = 
J 

> 
Kr(1, x’) dx’. (38) 

0 

Thus, for example, to calculate G,(i, x, x’), first the 
optical depths t and t’ corresponding to x and x’, 
respectively, are obtained from (38). Then the E, and 
f’ functions for these optical depths are used in 
equation (37). A similar procedure is used with 
equation (35). 

Equation (34) is the expression of conservation of 

total radiant energy in non-grey media. The terms 
within the braces calculate the efhux of energy from a 
fluid element, and the influx from the rest of the 
medium and boundaries, at a particular wavelength. 
The outer frequency integration denotes that in a non- 
grey medium the first law of thermodynamics requires 
only that the sum over all wavelengths of these 
interchanges be zero. Therefore, equation (34) is an 
integral over i of non-linear Fredholm integral 
equations in T. No direct analytic or numerical 
solution of this equation is possible. However, an 
iterative solution method can be used, and an efflicient 
scheme for that is detailed in [17]. In summary the 
governing equation (34) is first modified for discrete 
space coordinates in a manner similar to that 
described previously for the grey medium equation. 

The quadrature scheme used for the space 

integration is the same as that used before, and the 
following vectors and matrices are defined : 

K,(1): a diagonal matrix of absorption coefficients 

K,(i.. xi)9 
b(i): the Planck function vector of the unknown 
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temperature Ti = T(xi), such that its components are 
given by hi(l) = @A, T,), 

f,,(L): a vector with components given by fNs, 

= F&.(i, xi)* 
and the matrix 

A(A) = [Aik(A)], 

where 

Aik(A) = K,(& x,) [ws,,(‘) + Wikf~(~)]~ (39) 

The quadrature weights wik are the standard (e.g. 
Simpson’s rule) weights, and ws,, are the special weights 
[17] used for the singular part of the integrand. 
Equation (34) is now rewritten as: 

s 
‘ K,(i) [ -2b(l) + f&l) + Ah(i)] dI = 0. (40) 

0 

Because the vector b is a function of the unknown 
temperature Ti [see equation (39)], this last equation 
can be thought of as being a set of simultaneous non- 
linear equations in Ti. That is, equation (40) is of the 
form 

V(T,, T,, . ., 7-M) = 0, (41) 

where the vector v is the L.H.S. of equation (40). The 
wavelength integration in (40) is performed using a 
normal cubic spline integrator to accurately account 
for the absorption band structure. A Newton- 
Raphson iteration scheme is then applied to the system 
of equations (41). This scheme converges rapidly to the 
limit of machine accuracy when an approximate 
solution [17] is used to start the iterations. 

The generality of the present formulation allows the 
problem space to be almost infinite. An illustrative 
non-grey medium was therefore chosen to ask two 
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FIG 5. The CO fundamental absorption band used for the 
non-grey problems. 

rather general questions and demonstrate the codes 
capability. The example spectral structure is shown in 
Fig. 5 and can be viewed as originating from a gaseous 
absorption coefficient K,(i). This structure actually 
comes from the averaged (spectrally smoothed) 
fundamental vibration-rotation band of carbon 
monoxide. For simplicity the scattering particles are 
non-absorbing with a constant scattering coefficient of 
K, = 1 cm-’ and the medium thickness is X, = 
l.Ocm. A small temperature difference between the 
surfaces is chosen for this example (Ta = 600K and 7, 
= 650K) to satisfy the assumption of temperature 
independent properties. 

The first question asked concerns the accuracy of 
using grey type models for non-grey problems. To 
suppress other effects, the scattering is held constant at 
g = 0.8 and the surfaces are black. The non-grey 
solution of this problem is shown as curve 1 in Fig. 6. 
The second curve (2) in Fig. 6 is for the same medium 
but a band-averaged absorption coefficient R, is used 
instead of the actual absorption coefficient. i?, is 
calculated from 

K = JAi. 
1 

(42) 
B(i,, 7,) d,I 

Ai 

Here AL is the wavelength range of the absorption 
band (wavenumbers from 2030 to 2250cm- ‘) and 
K,(%) is the same as shown in Fig. 5. Once K, is 

1.0 

09 

0 02 0.6 08 IO 

x/x, 

FIG 6. Temperature as a function of optical depth t for non- 
grey radiative equilibrium. The medium has the CO 
absorption coefficient given in Fig. 5 with K, = 1 cm-r, g = 
0.8, x0 = 1 cm, and black surfaces at T, = 650 K and T, = 
600 K. The curves correspond to: (1) exact non-grey ; (2) a 
band averaged absorption coefficient, and (3) a grey 
approximation using the Planck mean absorption 

coefficient. 
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calculated, the non-grey medium solution procedure is 
used to calculate the temperature profile of curve 2 in 
Fig. 6. This solution simulates the “band model” or 
“picket fence model” type of solutions for non-grey 
media (see Ch. 11 in [ 11). Curve 3 in Fig. 6 is obtained 
from a grey approximation for this medium using the 
Planck mean absorption coefficient K, defined by 

i 

I 

l-l K,(IJB(i., To) di. 

K,= u” 
OT;: 

where To is given by 

T;: + T; 
T;:=7. 

(43) 

(44) 

Figure 6 shows the inaccuracy of both the band- 
model approximation and the grey medium 
assumption for modelling a non-grey absorbing, 
scattering medium. The grey medium approximation 
using K, (curve 3) overestimates the radiation slip and 

the centerline temperature as compared with the exact 
solution (curve 1). On the other hand, the solution 
using I?, (curve 2) underestimates the temperature 
difference between the surfaces and the medium next to 
them, while predicting a higher centerline temperature 
than that of the exact solution. The errors involved are 
of the same order of magnitude as would be 
introduced by changing the optical depth by about 
50% and, therefore, are of importance for many 

applications. 
The second question deals with what are the main 

effects of media and surface scattering in non-grey 

radiative equilibrium. Curve 1 in Fig. 7 is the non-grey 
solution for isotropic scattering (g = 0.0) and black 
surfaces. Curve 2 is the solution for the same 
conditions except now for anisotropic forward 
scattering (g = 0.8) which is a repeat of curve 1, Fig. 6. 
Comparing curves 1 and 2 of Fig. 7 shows that forward 
scatters increase the surface radiation slip as was also 
observed in the grey solutions of Fig. 3. Similar effects 
are observed when the optical. depths are decreased, as 
one would expect from the similarity laws of 

anisotropic scattering [19]. Curve 3 in Fig. 7 repeats 
the solution of curve 2 but now for a reflecting bottom 
surface with the radiative properties given in Fig. 8. 
Note that in the limit of a completely reflecting bottom 
surface the medium will take on the top surface 
temperature T, everywhere (4 = 0.0). Therefore curve 
3 is changing correctly. Curve 4 is the same solution 
with both surfaces reflecting. As in the discussion for 
the grey solutions we note that curve 4 is moving 
towards the limiting case for completely reflecting 
surfaces of 4 = constant = 0.5. For these example 
solutions where the optical depths are small, the 
scattering effects on the temperature profile are seen to 
be substantial. 

The few example problems solved here do not begin 
to explore the possible parametric space. They are 
presented only to illustrate the capabilities of the 

FIG. 7. Same as Fig. 6 except the curves correspond to : (1) 9 = 
0.0 and (2) y = 0.8, both with black surfaces; (3) reflecting 
bottom and (4) reflecting top and bottom, both with 9 = 0.8 

and surface properties given in Fig. 8. 

formulation and computer code. The solution for non- 
grey radiative equilibrium with scattering presented 
here is the first solution procedure that is both accurate 

and general. It has been constructed to accept all 
possible plane-parallel problems, and therefore is not 
meant to be compared with simpler approaches that 
are only valid in special cases. However, the present 
method is computationally fast (in the range of one cpu 
minute on an IBM 370) and therefore quite useful for 
parametric studies. 

Combined radiation, conduction and convection 

In the preceding section situations in which 
radiation is the dominant mode of energy transfer have 
been considered. If conductive heat transfer is also 
present, the energy equation for l-dim. media becomes 

@Ia - k!!?, 
dx dx2 

(45) 

Here k is the coefficient of thermal conduction for the 
medium. Expressions for the divergence of the 
radiative flux appearing above have already been 
derived [seeequations (23), (26) and (28)]. A procedure 
for numerical solution of (45) is now suggested. 

The unknown temperature profile has to be 
calculated at a finite set of equispaced space locations. 
Therefore, a discrete representation of the L.H.S. of 
(45) for the general non-grey case is given by the L.H.S. 
of equations (40) or (41). The derivative on the R.H.S. 
of equation (45) can be approximated by a finite 
difference scheme of the following form : 

d2T Ti_l - 2Ti + T,+l 
-= 
dx’ 

+ Ok. (46) 

i, (Ax? 
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This paper has presented a new method for solving 

P radiative heat transfer problems in plane-parallel 

8 60 
media with anisotropic scattering. The particular 

&f 
problem of radiative equilibrium was solved for a non- 
grey, scattering medium. The numerical computer 
programs developed in the course of this work are 

0.24 0.12 0.0 0.12 0 24 rather fast and can be used for many other studies, 
SURFACE REFLECTIVITY since the formulation is completely general. These 
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codes are available from the authors. 
SURFACE EMMISIVITY The real limitation of the present formulation is that 

FIG. 8. The bidirectional reflectivity p for the incidence angle 
it applies only in plane-parallel geometry. There are 

shown and the corresponding emissivity F_ for the opaque indications that a similar 3-dim. approach could be 
surfaces used in Fig. 7, curves 3 and 4. developed [20, 213. Although this would not be a 

simple project, it is probably the only method that will 
In the above expression, Ax is the spacing (xi - xi_ 1) lead to general solutions of radiative transfer with 
between the equispaced grid points used. With scattering in multi-dimensional media with arbitrary 
conduction, the energy equation becomes a set of surfaces. 
simultaneous non-lin&r equations, such that the ith 
equation is written as 

2. 
M 

X -28(1”* Ti) +fNs,(j*) +  C Aik(i)B(jL> Tk) 

k=l 1 3. 

-k 
Ti-, -2Ti + Ti+l 

(W’ 1 + O[(Ax)‘] = 0. (47) 4, 

The terms appearing above in the integrand have been 
defined in the section on radiative equilibrium. ‘. 
Because conduction is now present, the boundary 
conditions require that 6. 

T, = T(x,) = T,, 

T, = T(x,,,) = T,. 

Equation (47) is applicable only to T,, T,, . ., T,w _ 1, 
and one obtains a system of (M - 2) equations in the 
same number of unknowns. This system of equations 
can be solved by the same iterative scheme as used in 
solving equations (40) for radiative equilibrium. Since 
the equation now involves an approximation for the 
2nd-order derivative of T which is accurate only for 
closely spaced grid points, the temperature would 
have to be calculated at a larger number of locations 
(large M). 

Even a more complicated problem occurs in the 
presence of convective heat transfer. In that case the 
energy equation becomes a partial, differential- 
integral equation (see, e.g., equation (10-l) of [l]). 
The radiative transfer formulation discussed here 
may be used to substitute for the divergence of 
radiative heat flux in the energy equation. However, 
this results in a problem difficult to solve unless 
simplifying assumptions are made. Further analysis of 
this problem, and actual solution of the combined 
radiation and conduction problem using the method 
outlined here are left to future research. 
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TRANSFERT DE CHALEUR PAR RAYONNEMENT DANS UN ENVIRONNEMENT 
QUELCONQUE A PLANS PARALLELES 

Rdsu~-On presente une nouvelle approche du transfert radiatif avec diffusion et on obtient la premiere 
solution generale pour un milieu non gris immobile entre deux plans paralldles. On d&cute aussi l’utilisation 
de la m&hode en incluant la conduction et la convection. Des champs radiatifs sont calcules B I’aide de 
fonctions de diffusion (fonctions de Green) qui representent la riponse du milieu et des surfaces diffusantes 
(reflectrices) quelconques a un rayonnement de type unitaire. Ces fonctions de diffusion sont determinees en 
utilisant une methode numerique rapide. L’iquation de conservation d’energie contenant ces fonctions de 

dilhtsion est ensuite msolue numdriquement pour n’importe quel probleme de thermique. 

WARMEUBERGANG DURCH STRAHLUNG IN EINER VOLLKOMMEN ALLGEMEINEN 
PLANPARALLELEN UMGEBUNG 

Zusammenfassung-Es wird ein neuer Ansatz zur Beschreibung des Strahlungswlrmeaustausches mit 
Streuungvorgestellt und aufdie Entwicklung der ersten allgemeinen Losungfiir das Strahlungsgleichgewicht 
in einem nicht-grauen planparallelen Medium angewandt. Die Anwendung der Methode bei Beriicksichti- 
gung von Leitung und Konvektion wird ebenfalls diskutiert, Diffuse Strahlungsfelder werden in Form von 
detinierten Streufunktionen (Greenschen Funktionen) berechnet, welche das Verhalten des Mediums und 
aller streuenden (reflektierenden) OberfIachen bei Einheitsbeleuchtung beschreiben. Die Streufunktionen 
werden mit Hilfe eines schnellen numerischen Verfahrens gefunden. Die Energie-Erhaltungs-Gleichung, die 
diese Streufunktionen enthalt, wird dann numerisch fur jedes spezielle Wiirmeiibergangsproblem gelost. 

JIYYHCTbIti TEIIJIOHEPEHQC B OBUi[EM CJIYYAE IIJIOCKOIlAPAJIJIE~bHbIX 
OFPAX~AIOIIIMX IIOBEPXHOCfEH 

AHHOT~~IR- &YJJIO~eH HOBbd MeTOiI riccJIe~osaHaa ny%icToro TennonepeHoca B II~HC~TCTBHH 

paccermia II c ero noMombto snepebte nonyqeno o6mee pemetise paenosecnoro n3n~emir B iiecepoii 
nJiOCKORapaJiJIe,IbHOii CpWe. PaCCMOT~Ha TSLK)lte B03MOXGiOCTb KC~OJIb30BaHAI MeTO% npN yqele 

nepenarti renna rennonpoao~uocrbto II Komiexuifek. &i@hy3nbte nysucrbxe nons paccsrirbmatorca 
CnOMOt4mo+yHKuHfi paCCeRHKSI(@yHKUHk rpHHa),XapaKTepK3y~4aXBnKsHReOnHOpOAHO~~BellreH- 
HOCTH Ha cpeny ii pacceasaromne (orpa~atomrie) noaepxnocrri. ~~HK~~~ paccenstts onpeaenrwrcsi 

wcneHH0 MeTonoM 6bl~~p0r0 cyh4wipoeaeer. 3areM ypawewe coxpaHeHar 3Heprw, conepxawee 

~TW +~HKUNM, petuaerca ~Iicnetitio nflr ntotioii 3a,ua%r rennoo6Meua. 


